Immersions of manifolds.
نویسنده
چکیده
This paper outlines a proof of the conjecture that every compact, differentiable, n-dimensional manifold immerses in Euclidean space of dimension 2n - alpha(n), where alpha(n) is the number of ones in the dyadic expansion of n.
منابع مشابه
Multiple point of self-transverse immesions of certain manifolds
In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...
متن کاملCobordism of Fold Maps, Stably Framed Manifolds and Immersions
We give complete geometric invariants of cobordisms of fold maps with oriented singular set and cobordisms of even codimensional fold maps. These invariants are given in terms of cobordisms of stably framed manifolds and cobordisms of immersions with prescribed normal bundles.
متن کاملAn Existence Theorem for G-structure Preserving Affine Immersions
We prove an existence result for local and global G-structure preserving affine immersions between affine manifolds. Several examples are discussed in the context of Riemannian and semi-Riemannian geometry, including the case of isometric immersions into Lie groups endowed with a left-invariant metric, and the case of isometric immersions into products of space forms.
متن کاملOn isometric Lagrangian immersions
This article uses Cartan-Kähler theory to show that a small neighborhood of a point in any surface with a Riemannian metric possesses an isometric Lagrangian immersion into the complex plane (or by the same argument, into any Kähler surface). In fact, such immersions depend on two functions of a single variable. On the other hand, explicit examples are given of Riemannian three-manifolds which ...
متن کاملIsometric Immersions without Positive Ricci Curvature
In this note we study isometric immersions of Riemannian manifolds with positive Ricci curvature into an Euclidean space.
متن کاملJa n 20 06 Kähler manifolds and their relatives
Let M 1 and M 2 be two Kähler manifolds. We call M 1 and M 2 relatives if they share a non-trivial Kähler submanifold S, namely, if there exist two holomorphic and isometric immersions (Kähler immersions) h 1 : S → M 1 and h 2 : S → M 2. Moreover, two Kähler manifolds M 1 and M 2 are said to be weakly relatives if there exist two locally isometric (not necessarily holomorphic) Kähler manifolds ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 79 10 شماره
صفحات -
تاریخ انتشار 1982